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1. Introduction

Non-critical string theories with c ≤ 1 are an important conceptual laboratory for exploring

the inner workings of string theory. As world sheet theories, they are formulated by coupling

c ≤ 1 matter to Liouville theory and describe strings propagating in a space-time with a

linear dilaton and a tachyon condensate. While these world sheet theories are, in general,

as difficult to solve as critical string theories, it is a special feature of low-dimensional

strings that there often exists a dual description in terms of an exactly solvable matrix

model [1 – 5].

There are, typically, two distinct formulations of a given c ≤ 1 string as a matrix model:

the double-scaled matrix model and the Kontsevich model. Historically, these models were

derived in completely different ways. The double-scaled matrix model is based on ‘t Hooft’s

idea that, at large-N , the Feynman diagrams of gauge theory can be thought of as random

triangulations of a string world sheet. The Kontsevich model, meanwhile, is found by

directly solving the flow equations implied by the integrable structure. Amazingly, this

solution takes the form of a simple matrix integral [6]. Both approaches can be used to

compute observables, such as correlation functions of vertex operators on the world sheet,

and give identical results. However, until recently, it was not understood how they are

related to each other.
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〈φ|µB〉

φ
φ = (1/b) log(µB)

Figure 1: Illustration of profile 〈φ|µB〉 ∼ e−µBe−bφ

of the boundary state |µB〉

The existence of dual formulations, one in terms of a string theory and the other in

terms of matrices, is reminiscent of open/closed-string duality and suggests that the matrix

models may arise from open-string theories living on branes. There are two classes of branes

in low dimensional string theories, which arise from two possible boundary conditions in

the Liouville sector: FZZT branes [7, 8], which are the analogue of Neumann boundary con-

ditions and are extended, and ZZ branes [9], which are the analogue of Dirichlet boundary

conditions and are localized in the strong coupling region.

ZZ branes are unstable. This, together with the fact that they live in the strongly

coupled region, makes a direct construction of the open string theory living on them diffi-

cult. However, it was shown in [10, 11] that the decay of a ZZ brane can be interpreted as

a single eigenvalue of the double-scaled matrix model rolling down the unstable potential.

This allows one to think of the double-scaled matrix model as the open string theory liv-

ing on an infinite number of ZZ-branes that have condensed to form a Fermi-surface. See

also [12] for a discussion relating the double-scaled matrix model to the open string field

theory living on ZZ-branes.

FZZT branes are stable. They are labeled by a parameter µB, known as the boundary

cosmological constant. Although the FZZT brane is the analogue of Neumann bound-

ary conditions, it is only semi-infinite in extent. For example, if we denote by |µB〉 the

boundary state of an FZZT-brane in the (p, q) minimal model, then, in the mini-superspace

approximation, we have the profile1,

〈φ|µB〉 ∼ e−µBe−bφ
, where b2 =

p

q
, c = 1 − 6(p − q)2

pq
. (1.1)

As one can see in figure 1, the brane exists throughout the weak coupling region at large

φ, but disappears around φ ∼ 1
b log µB. Hence, by varying µB , FZZT branes can be used

as a probe of target-space [13].

Having identified the open string theory on ZZ branes with the double-scaled matrix

model, it is natural to try to identify the Kontsevich model with open strings living on

FZZT branes. The precise relation was first pointed out by Gaiotto and Rastelli who

considered Witten’s cubic open string field theory [14] for the open strings ending on stack

of n FZZT branes for the case of the minimal (p, q) = (2, 1) model [15]. Remarkably, they

1Our convention is that φ → +∞ is the weakly coupled region.
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found that the open string field theory [14] on a stack of FZZT branes could be reduced to

precisely the action of the n × n Kontsevich matrix integral2,

S(M,Λ) = Tr MΛ − M3

3
. (1.2)

Unfortunately, while this result is elegant, it has not been easy to generalize it to other

examples, such as the (p, q) 6= (2, 1) models [15, 16].

An alternate approach, which seems to generalize more easily, is to compute the open

string theory on the FZZT branes using the double-scaled matrix model. An FZZT brane

can be incorporated into the double-scaled matrix model by inserting into the path integral

the exponential of the loop operator,

exp(Tr log(µB − Φ)) = det(µB − Φ), (1.3)

where Φ is the N × N matrix of the double-scaled matrix model. This approach was

pursued in [17], and it was shown that one could derive the Kontsevich model from the

partition function of the (2,1) matrix model in the presence of a stack FZZT branes.

Unlike the string field theory analysis, the double-scaled matrix model analysis can

be generalized in a straightforward fashion to other examples. For example, it was shown

in [18] that, using the the double-scaled (p, 1) model [19] in the presence of n FZZT-branes,

one could derive the corresponding generalization of the Kontsevich integral,

Z(Λ) =

∫

dM e
−Tr

“

MΛ−Mp+1

p+1

”

. (1.4)

In spite of the success of these arguments in c < 1 models, the extension to c = 1 has

not been worked out. As with the c < 1 models there is an analogue of Kontsevich matrix

integral,

Zn(A, t̄) = (detA)ν
∫

dM eTr(−νMA+(ν−n) log M−ν
P∞

k=1 t̄kMk), ν = −iµ , (1.5)

first derived by Imbimbo and Mukhi [20]. However, the connection between the open string

theory on FZZT-branes and the Imbimbo-Mukhi model has not been made.

Several attempts to make this connection can be found in the literature. One approach

is to work out the string field theory living on a stack of FZZT-branes in the same spirit

as the Gaiotto-Rastelli computation. It is not clear, however, how the degrees of freedom

of open strings ending on a semi-infinite world volume should arrange themselves into

parameters A and t̄ of the Imbimbo-Mukhi model and the authors of [21] did not succeed

in recovering the Imbimbo-Mukhi model this way.

Another method of deriving the Imbimbo-Mukhi model used the so-called normal-

matrix model [22]. This model is similar to the Imbimbo-Mukhi model in that it is a

matrix integral solution to the integrable flow equations. As discussed in [23], one can

2Sometimes, the action is presented in a form where the term linear in M is replaced by term quadratic

in M by shifting M .
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perform a computation similar to [17, 18] in which one evaluates the expectation value

of certain determinant operators in the model to reproduce the Imbimbo-Mukhi model.

While this gives a nice connection between the normal-matrix model and the Imbimbo-

Mukhi model, the relationship between the determinant operators in the normal-matrix

model and FZZT branes is not clear.

2. FZZT branes in bosonic c = 1 string theory

Having reviewed what is known about the c = 1 case, we can now turn to the main goal

of this paper: we wish to fill in the conceptual gap between the open string theory on

the FZZT branes and the Imbimbo-Mukhi model. To do so, we attempt to compute the

expectation value of the exponential of the loop operator, as was done in the c < 1 case,

and manipulate it into the form of the Imbimbo-Mukhi matrix integral [18]. As we will

see, many of the ingredients that were used in the c < 1 computation have analogues in

the c = 1 case. There is, however, one new subtlety. As described below, one must take

a certain scaling limit of the FZZT partition function before one can derive the Imbimbo-

Mukhi model.

We begin our discussion with a brief review of the relevant aspects of the c = 1 matrix

model that we need for our derivation. We mostly follow the approach of Kostov [24, 25].

The matrix-model action is given by

S = Tr

∫ β

0
dx

(

−1
2(∇AΦ)2 + 1

2Φ2
)

, (2.1)

where

∇AΦ = ∂xΦ − i[A,Φ], (2.2)

and Φ(x) and A(x) are N × N hermitean matrices. For the bosonic theory, we work in

units where α′ = 1. Since we are interested in deriving the Imbimbo-Mukhi model, we

work with the euclidean action and compactify the time direction with period β = 2πR.

It is useful to rewrite the action, (2.1), in chiral form. To do this, one first switches to

the first order form,

S = Tr

∫ β

0
dx

(

iP (∇AΦ) − 1
2P 2 + 1

2Φ2
)

, (2.3)

which reduces to equation (2.1) upon integrating out P . Then, substituting

X± =
Φ ± P√

2
, (2.4)

one arrives at the chiral action,

S = Tr

∫ β

0
dx(−iX+∇AX− + X+X−). (2.5)

In this form it is relatively straightforward to reduce the path integral over X± and A to

an ordinary three-matrix integral [26, 25, 24]. Defining X± = X±(x = 0) one finds,

ZN =

∫

dX+dX−dΩei Tr(X+X−−q−1X+ΩX−Ω−1), (2.6)
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where the subscript, N , is a reminder that the partition function depends on the rank, N ,

of the matrices and q = eiβ. The matrix, Ω ∈ U(N), is given by

Ω = P
[

ei
R β
0 A(x)dx

]

. (2.7)

This expression can be simplified further by integrating out Ω, which reduces the partition

function to an integral over the eigenvalues of X± ,

ZN =

∫ N
∏

k=1

dx+
k dx−

k det
jk

(e−ix−
j x+

k ) det
jk

(eiq−1x−
j x+

k ). (2.8)

In order to extract the observables of the c = 1 matrix model, one computes the grand

partition function, which, following [26, 25], can be expressed in the form of a Fredholm

determinant,

Z(µ) = e−βµNZN = det(1 + e−βµK−K+), (2.9)

where

[K+f ](x−) =

∫

dx+eiq−1x+x−f(x+),

[K−f ](x+) =

∫

dx−e−ix+x−f(x−) (2.10)

are operators acting on functions of x+ and x−, respectively. The Fredholm determinant

is computed by diagonalizing the operators K+ and K− and taking the product of their

eigenvalues. This closely resembles what one does in computing the partition for the two-

matrix models in terms of orthogonal polynomials. Up to non-perturbative corrections,

the partition function of the undeformed euclidean c = 1 model can be written as

log Z(µ) =
∑

r=n+ 1
2
>0

iφ0(−µ +
i

R
r), eiφ0(E) = eiπ/4

√

cosh(πE)

π
Γ

(

1

2
+ iE

)

. (2.11)

As is well known, when compactified on a circle, the c = 1 theory contains a tower

of tachyon deformations with discrete euclidean momenta. These deformations change the

asymptotic shape of the Fermi surface in phase space. One can incorporate them into the

matrix model by generalizing (2.8) to

ZN =

∫ N
∏

k=1

[dx+
k ][dx−

k ] det
jk

(e−ix−
j x+

k ) det
jk

(eiq−1x−
j x+

k ), (2.12)

where

[dx±] = e±iU±(x±)dx±, U±(x±) = iz±kx
k/R
± (2.13)

and the zk are the deformation parameters corresponding to tachyons with momentum k.

The sign and the phase of zk was chosen so that it coincides with the deformation parameter

of [27]. This identification is explained in more detail in appendix A. The grand partition

function is still given by the Fredholm determinant, but for the deformed operator,

Z(µ) = det(1 + eβµK̃−K̃+), (2.14)
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where

[K̃+f ](x−) =

∫

[dx+]eiq−1x+x−f(x+),

[K̃−f ](x+) =

∫

[dx−]e−ix+x−f(x−) . (2.15)

It was shown in [24] that such a deformation can be described in terms of a Toda flow and

that the partition function is related to the τ -function via3

Z(µ) = τ
(

R(iµ − 1
2) + 1

2 , z+, z−
)

. (2.16)

The initial condition for the flow, (2.11), can also be expressed in the form of the string

equation, found in [31, 32].

Having given a brief review of the c = 1 matrix model, we now study what happens

when we add an FZZT-brane to the story. As mentioned earlier, an FZZT-brane can be

incorporated in the matrix model by inserting into the path integral an exponential of the

macroscopic-loop operator,

e±W (x) = det(Φ(x) − µB)±1 = det
(

(X+(x) + X−(x))/
√

2 − µB

)±1
, (2.17)

as first considered in [33]. Note that the determinant operator generates an FZZT brane

with Dirichlet boundary conditions in the c = 1 direction and, hence, is localized in eu-

clidean time at a point x. The “±” in the exponent is included so that we can simul-

taneously consider the determinant and the inverse determinant operator insertions. As

we will see later, the connection with the Imbimbo-Mukhi model favors the inverse deter-

minant [23]. However, inserting the determinant also gives rise to a matrix integral that

encodes the τ -function of the Toda integrable flow and is, roughly, the complex conjugate

of the Imbimbo-Mukhi model.

Inserting (2.17) into the chiral lagrangian, (2.5), one sees that the determinant has a

simple x dependence,

e±W (x) = det
(

(eix/RX+(x = 0) + e−ix/RX−(x = 0))/
√

2 − µB

)±

. (2.18)

One can also see this x dependence by considering the Heisenberg form of the operators,

X±, in the hamiltonian language.

Now, it would be nice if inserting this operator into the path integral was equivalent

to a tachyon deformation. It clearly is not, since the determinant contains a complicated

mixture of X+ and X− operators, and does not factorize into an X+ term and an X− term

in the way that the tachyon deformation, (2.13), does. However, as we now show, it is

possible to get a pure tachyon deformation if we take a certain limit of the determinant

operator.

Suppose that we analytically continue x = −it and send t → ∞ while simultaneously

rescaling

µB = etµ′
B . (2.19)

3The connection between c = 1 matrix model and the Toda integrable hierarchy was first pointed out

in [28]. For introduction to Toda lattice hierarchy, see [27, 29, 30]
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Then, up to an overall normalization factor, the operator asymptotes to

det

(

1 − X+

µ′
B

)±1

= e∓
P

n
1
n

µ′−n
B Xn

+ . (2.20)

In the case where the radius of the c = 1 direction is one, inserting this operator into the

partition function is equivalent to a shift in the Toda flow,

δzk = ± 1

n
µ′−n

B , δk > 0. (2.21)

Readers familiar with [23] will recognize this deformation as the same one generated by one

of the determinants in the normal-matrix model, det(1−Z/µB)±1. The other determinant,

det(1−Z†/µB)±1, can generated by taking the opposite sign in the analytic continuation,

x → it . Notice that away from R = 1 there does not seem to be any relation between the

FZZT-brane determinant and the determinant of the normal matrix model.

Once we have identified that our limit of the FZZT determinant generates the Toda

flow, (2.21), the integrable structure of the model is enough to determine that the expec-

tation value of (2.20) will give the Imbimbo-Mukhi model, as was shown in [23] using the

normal-matrix model. However, we would like to understand how to derive the Imbimbo-

Mukhi model more directly.

As in the c < 1 case, it is useful to introduce the Baker-Akhiezer function, Ψ±
s (λ),

which is given in terms of the τ -function by

Ψ+
s (λ) =

τ(z+ − ε(λ−1/R), z−, s)

τ(z+, z−, s)
exp[z+(λ1/R) + s log(λ1/R)],

Ψ−
s (λ) =

τ(z+, z− − ε(λ1/R), s + 1)

τ(z+, z−, s)
exp[z−(λ−1/R) + s log(λ1/R)], (2.22)

where

ε(λ) =

(

λ,
λ2

2
,
λ3

3
, . . .

)

, z+(λ) =

∞
∑

n=1

znλn, z−(λ−1) =

∞
∑

n=1

z−nλ−n . (2.23)

For a formal definition of the Baker-Akhiezer function in terms of dressing operators in the

Lax formalism, see equations (25) and (27) of [34].

Notice that, in the expression for Ψ+
s , the argument of the τ -function is shifted by

z+ → z+−ε(λ−1/R). Setting λ = µ′
B and R = 1, we see that this is the same shift as (2.21),

provided we consider the inverse determinant. Hence, the τ -function in the presence of the

inverse determinant, (2.20), can be computed if we know the Baker-Akhiezer function.

By itself, this fact is not very useful. However, the Baker-Akhiezer functions are also

closely related to the biorthogonal eigenfunctions, ψ±, of the deformed operators, K̃± given

in (2.15) [24]:

ψE
+(x+)∗ = Ψ+

s (x+)
∣

∣

s=−R(iE+1/2)
, ψE

−(x−)∗ = x−Ψ−
s (x−1

− )
∣

∣

s=−R(iE+1/2)
. (2.24)

Since the biorthogonal eigenfunctions are related to each other by Fourier transform, it

follows that Ψ+
s and Ψ−

s are related by

Ψ+
s (λ+) =

∫

dλ−1
− eiλ+λ−1

− λ−Ψ−
s (λ−). (2.25)
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Now, suppose that z+ = 0. Then the non-trivial pieces of Ψ−
s drop out and Ψ−

s is completely

determined as a function of z− and λ;

Ψ−
s (λ−) = N exp

[

z−(λ
−1/R
− ) + s log(λ

1/R
− )

]

, (2.26)

where N is a normalization factor independent of λ and z−, which we can ignore. Changing

variables to m = λ−1
− , one has

Ψ+
s (a) =

∫

dm exp
[

iam + z−(m1/R) − (s + R) log(m1/R)
]

. (2.27)

Using (2.22), one finds

τ(−ε(a−1/R), z−, s) =

∫

dm (ma)−s/R exp
[

iam + z−(m1/R) − log(m)
]

, (2.28)

which is equivalent to

Z1(A, t−) = τ(−ε(a−1/R), z−, s) =

∫

dM (MA)νR+(R−1)/2e−ν((MA)R+t−(M))−log(M),

(2.29)

with the identifications,

t−n = iµn/2R−1z−n, m = µ1/2MR, a = µ1/2AR, s = iµR−R − 1

2
, ν = −iµ. (2.30)

As we discuss in appendix C, this argument can be iterated to give the general expression,

Zn(A, t−) =

∫

dMi
∆(M)

∆(A)

n
∏

i=1

[

(MiAi)
νR+(R−1)/2e−ν((MiAi)

R+ 1
n

t−nMn
i )−n log(Mi)

]

, (2.31)

with Miwa-Kontsevich-like transform,

tn = − 1

νk
A−k . (2.32)

This is the same result obtained in [23] using the normal-matrix model.4 Setting R = 1,

we reproduce precisely the Imbimbo-Mukhi integral.

Recall that, to match with the argument of the Baker-Akhiezer function, we had to

consider the inverse determinant. This is in agreement with the observation made in [23]

that the Imbimbo-Mukhi integral is derived from the insertion of an inverse determinant

in the normal-matrix model.

One can also consider the insertion of a determinant. In this case, one must work with

the dual Baker-Akhiezer functions [30],5

Ψ+∗
s (λ) =

τ(z+ + ε(λ−1/R), z−, s)

τ(z+, z−, s)
exp

[

−z+(λ1/R) − s log(λ1/R)
]

,

4It should be emphasized that while the sign of zn’s is fixed by matching to the conventions of [27],

there is no intrinsic definition for the sign of the tn’s. In particular, the sign convention for the tn’s in [20]

and [23] appear to differ by a sign.
5They are related to w(∞

0 )∗(s, z+, z−, λ) in the notation of [27] according to

Ψ+∗
s (λ) = w

(∞)∗(s, z+, z−, λ)e−z+(λ1/R)
λ
−s/R

, Ψ−∗
s (λ) = w

(0)∗(s, z+, z−, λ)e−z−(λ1/R)
λ
−s/R

.
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Ψ−∗
s (λ) =

τ(z+, z− + ε(λ1/R), s − 1)

τ(z+, z−, s)
exp

[

−z−(λ−1/R) − s log(λ1/R)
]

. (2.33)

As with the Baker-Akhiezer functions, they are related by Fourier transform;

1√
2π

Ψ+∗
s (λ+) = λ

1−1/R
+

∫

dλ−1
− e−iλ+λ−1

−
1√
2π

λ
1/R
− Ψ−∗

s (λ−), (2.34)

from which one can derive,

Zn(A, t−) =

∫

dMi
∆(M)

∆(A)

n
∏

i=1

[

(MiAi)
νR+(R−1)/2e−ν((MiAi)R+ 1

n
t−nMn

i )−n log(Mi)
]

,

tn = − 1

νk
A−k, ν = iµ . (2.35)

For R = 1, one can use the Harish-Chandra/Itzykson-Zuber formula [35, 36] to re-express

this integral in matrix form. This again yields a matrix model identical to the Imbimbo-

Mukhi model. The only difference between (2.35) and (2.31) is that we have changed the

relative sign between ν and iµ. Since both models are an even function of µ, this does not

have any effect on the closed string observables. Therefore, at the level of reproducing the

τ -function, one can not distinguish between the determinant and the inverse determinant.

This choice is ultimately tied to whether the FZZT-ZZ strings are bosons or fermions.

When R 6= 1 it is still true that (2.31) and (2.35) give complete information about the τ -

function. However, since the FZZT determinants no longer give rise to a Toda flow, (2.31)

and (2.35) are no longer related — in any obvious way — to FZZT-branes. Thus, we

find that the open/closed string duality, relating the Kontsevich-like matrix integral and

the FZZT brane, appears to work only at self dual radius. This is consistent with the

observation in [23] that (2.31) and (2.35) cannot be represented in the form of a matrix

integral except at R = 1. After all, if (2.31) and (2.35) were derivable from an open/closed

duality, one would expect the result to take the form of a matrix integral for general R.

3. FZZT branes in ĉ = 1 string theories

Our analysis relating the determinant operator to a Kontsevich-like matrix integral can be

extended to the ĉ = 1 models [37 – 39]. There are two ĉ = 1 models: type 0A and type 0B.

We consider them separately.

3.1 Type 0A

The type 0A theory is formulated in terms of a U(N)×U(N + q) gauged matrix model [38,

39]. The parameter q gives the number of units of Ramond-Ramond flux in the back-

ground.6 As in the bosonic case, one can fix the gauge and reduce the matrix degrees of

freedom to the eigenvalues. This gives rise to a model which is equivalent to the deformed

matrix model originally constructed in [41]. We will work in units where α′ = 1/2 so that

6See [40] for a discussion of the subtleties associated with the two ways of introducing charges in this

model.
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the harmonic oscillator has the same oscillator frequency as the c = 1 model. Physical

observables such as the S-matrix and the partition function of this model were computed

in [42]. These computations were then reformulated in light-cone variables [40], which

are better suited for the analyzing the deformations and Toda integrable structure of the

model [43].7

The main difference between the type 0A model and the bosonic c = 1 model is that,

in 0A, the wave functions, ψE
+(x+) and ψE

−(x−), are related by a Bessel transform instead

of a Fourier transform. As a result, the Baker-Akhiezer functions are also related by an

integral Bessel transform,

Ψ+
s (λ+) =

∫ ∞

0
dλ−1

−

√

λ+λ−1
− Jq(λ+λ−1

− )λ−Ψ−
s (λ−). (3.1)

The partition function can be written in the form8,

ZN =

∫ N
∏

k=1

[dx+
k ][dx−

k ] det
jk

(
√

x−
j x+

k Jq(x
−
j x+

k )
)

det
jk

(
√

x−
j x+

k Jq(e
−iβx−

j x+
k )

)

, (3.2)

where

[dx±] = e±iU±(x±)dx±, U±(x±) = iz±kx
k/R
± . (3.3)

We can also express Z(µ) as a Fredholm determinant,

Z(µ) = det(1 + eβµK̃−K̃+), (3.4)

where

[K̃+f ](x−) =

∫

[dx+]
√

x+x−Jq(e
−iβx+x−)f(x+) ,

[K̃−f ](x+) =

∫

[dx−]
√

x+x−Jq(−x+x−)f(x−) . (3.5)

Using the relation between the τ -function and the Baker-Akhiezer function, (2.22), one

finds

τ(∓ε(a−1/R), z−, s) =

∫

dm(ma)−s/R+1/2Jq(am) exp[±z−(m1/R) − log(m)], (3.6)

which generalizes (2.28) to type 0A. Just as in the c = 1 case, one can rescale

t−n = iµn/2R−1z−n, m = µ1/2MR, a = µ1/2AR (3.7)

to bring this expression into an Imbimbo-Mukhi form. Generalizing to the multiple FZZT

case one finds the expression,

7See also [44 – 47] for a related discussion in the context of minimal models.
8Note that q here refers to the background flux and not eiβ .
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τ(∓ε(a−1/R), z−, s) =

=

∫

dM
∆(M)

∆(A)

n
∏

i=1

(MiAi)
−s+R/2Jq(±µAR

i MR
i ) exp[±iµ(t−(Mi)) − n log(Mi)], (3.8)

where

s = ±iµR − R − 1

2
. (3.9)

Using
∫

dθ eiqθ−νma cos θ = Jq(m) , (3.10)

one can integrate in an additional variable and express the shifted τ -function in a two-

integral form:

τ(∓ε(a−1/R), z−, s) =
1

∆(z)1/2R

n
∏

i=1

(

z
ν/2+(R−1/2)/4R+q/2
i

)

∫ ∞

0
dsi

n
∏

i=1

(

1

si
e−sizi+q

)

×
∫

dyi ∆(y)1/2R
n

∏

i=1

y
ν/2+(R−1/2)/4R−(n+q/2)
i e−yi/si exp[−ν(t−(y

1/2R
i ))] , (3.11)

where we have used the change of variables,

yi = m2
i , s =

m

aν
cos θ , zi = ν2a2

i , ν = ∓iµ . (3.12)

Setting R = 1/2, one recovers a matrix integral representation found in [48, 49].

To relate the Baker-Akhiezer function and the τ -function to FZZT branes, we consider

the determinant operator [39],

e±W (x) = det(X(x)X(x)† − µB)±1 = det
(

(X+(x) + X−(x))(X†
+(x) + X†

−(x))/2 − µB

)±1
.

(3.13)

Taking the same scaling limit as we did in the bosonic case, (3.13) reduces to

det

(

1 − X+X†
+

µ′
B

)±1

= e∓
P

n
1
n

µ′−n
B (X+X†

+)n
. (3.14)

Comparing this with the parameterization of the deformation parameter, (2.13), we see

that the exponentiated macroscopic-loop operator matches with the Baker-Akhiezer func-

tion at R = 1/2. This provides the link between FZZT branes and the Imbimbo-Mukhi

integral, (3.8), as well as the matrix integral of [48, 49].

Since ĉ = 1 models are on firmer non-perturbative footing that the bosonic c = 1

models, it is instructive to examine the the deformed τ -function function at the non-

perturbative level. To that end, it is useful to go back to the integral transform, (3.1), and

write it in the form,

Ψs
+(λ+) =

∫ ∞

0
dλ−1

−

√

λ+λ−1
−

(

H+
q (λ+λ−1

− ) + H−
q (λ+λ−1

− )
)

λ−Ψs
−(λ−), (3.15)
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where

H±
q (x) =

Jq(x+x−) ± iYq(x+x−)

2
(3.16)

are the Henkel functions. Assuming that the background is only deformed by z−, one can

use the relation between the Baker-Akhiezer function and the τ -function to write

τ(−ε(a−1/R), z−, s) =

∫ ∞

0
dm(ma)−s/R+1/2(H+

q (am)+H−
q (am)) exp[z−(m1/R)− log(m)] .

(3.17)

To define the theory non-perturbatively, one must specify the contour of integration for

the variable, m. For the undeformed background, z− = 0, one can integrate the Henkel

function H±
q (x) anywhere along the upper/lower half of the complex x plane. This choice

of contour reproduces the correct perturbative expansions in z−.

When the deformation parameters z− are finite, one encounters a discrete choice of

allowed contours that give rise to finite but distinct results. To illustrate this point, con-

sider the simplest case of R = 1/2 with z−1 being the only non-vanishing deformation

parameter. We will also take µ to be real and positive, and t−1 to be real but have small

negative imaginary part. Then, z is mostly imaginary with a small negative real part. The

asymptotic behavior of the integrand (3.17) is dominated by the exp(z−1m
2) factor and

converges when integrated along contours that go to infinity along the unshaded region, as

illustrated in figure 2.

The integral involving H+
q (am) can be performed along either of the contours labeled

by A and B in the figure. The difference between the two contours will only contribute

non-perturbatively in the asymptotic expansion in small t−1/a
2 = t−1/µ

2A2. For a more

general deformation, there could be many distinct contours consistent with the perturbative

expansion. Therefore, in order to define the τ function non-perturbatively, we need a

definite prescription for the contour.

One natural requirement is that the contour have a well defined limit as the t−n → 0.

Let us assume, for simplicity, that there is some k > 0 such that t−n = 0 for n > k.9 Then,

the factor of exp[z−(m1/R)] is always oscillating along the positive real axis. By adding a

small imaginary part with appropriate sign to t−k, one can open a small region around the

positive axis for which the exponential factor exp[z−(m1/R)] converges. This is illustrated

in figure 2. Both Henkel functions can then be integrated over contours on the correct side

of — and arbitrarily close to — the real axis. In figure 2, this corresponds to choosing

the contour A. We propose that this contour is the correct non-perturbative definition of

our integral, (3.17). This prescription gives a natural, though not unique, non-perturbative

definition of the Toda flow. It would be instructive if one could find some consistency check

for this prescription.

3.2 Type 0B

Finally, let us briefly describe the extension to the case of type 0B theory. This model

turns out to be more subtle at the non-perturbative level than the type 0A model.

9Such deformations were also discussed in [50].

– 12 –



J
H
E
P
0
2
(
2
0
0
6
)
0
0
2

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

B

A

Im[m]

Re[m]

Figure 2: An illustration of possible contours of integration in m-space for which the integral (3.17)

converges. Contours asymptoting to infinity along the shaded regions are excluded. Here it is

assumed that z
−1 is the only non-vanishing deformation parameter.

We first consider the case of vanishing background RR flux. The model is formulated

as the quantum mechanics of an inverted harmonic oscillator potential with fermions filling

both sides of the potential to the same level. There is an explicit Z2 symmetry exchanging

left and the right side of the potential, and, as long as the unbounded potential is regularized

in a way that preserves the left/right symmetry, the spectrum of states can be separated

into sectors which are odd and even with respect to this Z2. Since these two sectors

are decoupled from one another, the partition function factorizes into a product of two

τ -functions [43],

Z(µ) = τodd(zodd+, zodd−, s)τeven(zeven+, zeven−, s). (3.18)

The Baker-Akhiezer functions for the odd and even sectors have an integral transform,

Ψs
odd+(λ+) =

∫ ∞

0
dλ−1

− sin(λ+λ−1
− )Ψs

odd−(λ−),

Ψs
even+(λ+) =

∫ ∞

0
dλ−1

− cos(λ+λ−1
− )Ψs

even−(λ−). (3.19)

Using the relation between τ -functions and the Baker-Akhiezer functions, one arrives

at an integral expression of the form,

τ even(tk, t−k, s) =
∫ ∞

0
dMi

∆(M)

∆(A)

n
∏

i=1

(MiAi)
νR+(R−1)/2 cosh(νAR

i MR
i ) exp[νt−(Mi) − n log(Mi)],
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τ odd(tk, t−k, s) =
∫ ∞

0
dMi

∆(M)

∆(A)

n
∏

i=1

(MiAi)
νR+(R−1)/2 sinh(νAR

i MR
i ) exp[νt−(Mi) − n log(Mi)] , (3.20)

with

tk = −A−k

νk
. (3.21)

These expressions are to be thought of as arising from the Fredholm determinants,

τeven = det(1 + eβµK̃even−K̃even+), τodd = det(1 + eβµK̃odd−K̃odd+), (3.22)

where, for example,

[K̃even+f ](x−) =

∫

[dx+] cos(e−iβx+x−)f(x+),

[K̃odd+f ](x+) =

∫

[dx−] sin(e−iβx+x−)f(x−), (3.23)

with [dx±] defined in the same way as in (2.13).

To relate these expressions to FZZT branes, observe that the 0B FZZT determinant [37,

51, 45],

e±W (x) = det(X(x)2 − µB)±1 = det
(

(X+(x) + X−(x))2 − µB

)±1
, (3.24)

asymptotes to

det

(

1 − X2
+

µ′
B

)±1

= e∓
P

n
1
n

µ′−n
B X2n

+ , (3.25)

which, for R = 1/2, matches the deformation of the tk implied by the Baker-Akhiezer

function. In a broad sense, we have therefore succeeded in relating a scaling limit of FZZT

amplitude to a Kontsevich-like integral expression (3.20). Note however that unlike in

the bosonic and the 0A cases, R = 1/2 is not the special radius for which (3.20) can be

re-expressed in matrix form using the Harish-Chandra/Itzykson-Zuber formula.

Note, also, that the exponentiated macroscopic-loop operator perturbs both the even

and the odd sectors simultaneously. As such, it does not probe the two sectors indepen-

dently. A different object must be introduced to generate purely even or odd deformations.

It is not clear what that object is.

To make sense of the integral expression, (3.20), at the non-perturbative level, it might

seem that all one has to do is address the issue of contours as we did for the 0A. However,

there is an additional subtlety in the 0B case.

To understand the origin of this subtlety, consider turning on a flux. There are two

proposals for the theory deformed by a flux. One method is to represent the flux by a

relative shift between the chemical potentials of the even and odd sectors. However, it was

found that such a prescription gives rise to violation of T-duality at a non-perturbative

level [52, 40].

An alternative prescription, where one adjusts the chemical potential of the left and

right-moving sectors independently, was proposed in [40]. This prescription leads to par-

tition function that is T-dual at the non-perturbative level. A second advantage of this
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formalism is that there is a well defined notion of a Fermi-sea, which is lost when one

deforms the even/odd sectors separately.

Unfortunately, the integrable structure of 0B has only been understood in the case

where we consider a flow which acts only on the even or odd sectors separately. In this

formalism it is possible to turn on a flux using the first method, in which the even and

odd sectors have different chemical potentials, but it seems very difficult to consider the

case where the left and right sectors are modified. Moreover, by splitting the fock space

into even and odd sectors, one loses the notion of a single Fermi-sea once any deformations

are turned on. This suggests that Toda flow given in [43] may not represent a physical

deformation of the background.

Perturbatively, none of this is an issue since the difference between the left/right and

even/odd bases only enters non-perturbatively. However, to make the connection between

FZZT-branes and Konsevich-like integral expressions at the non-perturbative level, it seems

one must first gain a better understanding of the integrable structure of 0B.10

4. Conclusions

In this paper, we found a precise relationship between the Imbimbo-Mukhi model and

the open string physics living on FZZT branes. The key ingredient in this relationship,

which did not play a role in the c < 1 theories, was our scaling limit. Allowing the time

coordinate of the FZZT brane to be complex, we pushed the location of the brane into the

far Minkowski past. This reduced the complicated action of the full FZZT determinant to

a pure Toda flow.

We have shown in this paper that for the c = 1 model at self dual radius, FZZT ampli-

tude in the scaling limit is interpretable as the Imbimbo-Mukhi integral. This identification

can be viewed as an example of open/closed string duality. Our observations do not nec-

essarily mean that open/closed string duality breaks down away from self dual radius or

from the scaling limit. It simply means that they do not take the Imbimbo-Mukhi form

away from this special limit.

Using analytic continuation to reduce a brane amplitude to a purely closed string

process is reminiscent of the imaginary brane analysis of [53]. There one does not require a

limiting procedure; rotating the brane to imaginary time is all that is required to decouple

the open string states. This may well be true in our story; however, the closed string

states would, in general, be a mixture of incoming and outgoing states. The extra step

of pushing the brane to the far past is probably required to reduce the FZZT brane to a

purely incoming source. Understanding the precise physical motivation for this limit is an

important open problem, which we leave to future research.

We also considered the generalization to ĉ = 1 models. For type 0A theory, we found

that the integral expression generalizing the Imbimbo-Mukhi formula [48, 49] can be related

to the scaling limit of a macroscopic-loop operator provided the radius is R = (1/2)
√

2α′.

We also provided a prescription to determine the τ -function non-perturbatively along the

integrable flow.

10Related discussion on integrable structure for minimal 0B models can be found in [45].
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A similar extension to 0B turned out to be more subtle. Perturbatively, the compu-

tation is straightforward as it reduces to two copies of the c = 1 theory. These two copies

can be thought of as either the left and right wave functions or, alternatively, the even and

odd wave functions.

Picking the even/odd basis, we find that, when R = (1/2)
√

2α′, the FZZT-brane

determinant generates the appropriate Toda flow. Unfortunately, the flow is the same for

the even and odd sectors. It is not clear if there is a better way to arrange the FZZT-brane

so that it only generates a flow in either the even or odd sectors. Perhaps a more serious

problem is that even at R = (1/2)
√

2α′, we do not find that the resulting integral can be

rewritten as a matrix integral. This issue arises from the fact that the integral is essentially

two copies of the c = 1 integral, which required R =
√

α′ to be written in a matrix form.

Non-perturbatively, which basis one chooses matters. In the case when the flux van-

ishes, the even/odd basis seems most natural as the problem continues to be manifestly

factorizable. One can define two commuting Toda flows which generate separately even

and odd deformations.

However, when one turns on a flux, using the even/odd basis, one finds that the

0B partition function is no longer T-dual to the partition function of the 0A theory. If,

however, one uses the left/right basis of [40], T-duality is restored. Unfortunately, in the

left/right basis, it is no longer obvious how one should write down the Toda flow. Thus,

to properly generalize the open/closed duality story to the 0B case appears to require a

better understanding of the integrable structure of 0B. We hope to address this issue in

the near future.

There are a number of interesting open issues. One is to explore open/closed dual-

ity for Neumann FZZT branes. Unlike the macroscopic-loop operator for the Dirichlet

case [33], the correct realization of the Neumann FZZT brane has not been found. There

is an interesting proposal for representing FZZT branes using non-singlet sectors due to

Gaiotto [54], but it does not appear to reproduce the correct disk and annulus amplitudes

computed using world sheet techniques.

An understanding of the Neumann FZZT branes might shed some light on our issues

with the 0B analysis since the T-dual of the Dirichlet FZZT branes in 0B are the Neumann

branes in 0A. Unlike in the Dirichlet case, the Neumann brane acts as a source for winding

modes. In the matrix model language, winding modes are encoded by the holonomy of the

Wilson lines of the gauged quantum mechanics. The fact that there are two gauge groups

in the 0A model is related to the existence of the left and right sectors of the 0B theory.

Hence, if one can understand the integrable structure of the winding modes of 0A in the

presence of flux, it might suggest the correct integrable structure for the 0B side.

As a final point, we mention that the 0A and 0B models are simply two isolated points

among a class of non-critical string theories, including affine type 0 theories and the type-II

theories. These theories are connected by a web of smooth deformations illustrated in [55].

It should be possible to explore the integrable flow and T-duality of each of these theories

at the non-perturbative level, and to find a suitable generalization of the Imbimbo-Mukhi

integral.
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A. Conventions for Toda integrable structure

In this appendix, we briefly review the machinery of the Toda hierarchy in order to fix our

conventions. For a comprehensive introduction to the Toda integrable hierarchy, see [27,

29, 30].

Following the analysis of [24, 25],we can the partition function of undeformed c = 1

model in terms of the Fredholm determinant,

Z(µ) = det(1 + e−βµK−K+), (A.1)

where

[K+f ](x−) =

∫

dx+eiq−1x+x−f(x+),

[K−f ](x+) =

∫

dx−e−ix+x−f(x−). (A.2)

Its log is therefore the sum over the eigenvalues of the operator,

log(1 + e−βµK−K+) . (A.3)

The orthonormal eigenstates, |E〉, can be expressed in the position basis as

ψE
0±(x±) = 〈x±|E〉 =

1√
2π

e∓iφ0(E)/2x
±iE−1/2
± , (A.4)

and satisfy

〈E|E′〉 = δ(E − E′) . (A.5)

One then has

log(Z(µ)) = 〈E| log(1 + e−β(µ+E))|E〉 =

∫

dE ρ(E) log(1 + e−β(µ+E)). (A.6)

To compute ρ(E), one imposes a boundary condition,

ψE
+(Λ) = ψE

−(Λ), (A.7)

which gives

ρ(E) = − 1

2π

∂

∂E
φ0(E) +

1

π
log Λ. (A.8)
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The log(Λ) term non-universal and can be dropped. By integrating by parts, one arrives

at the standard expression,

log(Z(µ)) = − β

2π

∫

dE
φ0(E)

1 + eβ(E+µ)
. (A.9)

In the deformed theory, the K̃± operator is modified;

[K̃+f ](x−) =

∫

[dx+]eiq−1x+x−f(x+),

[K̃−f ](x−) =

∫

[dx−]e−ix+x−f(x−) . (A.10)

The eigenvectors of the operator K̃−K̃+ can be expressed as

ψ̃E
±(x±) = e−iU±(x±)ψE

±(x±), (A.11)

where11

ψE
±(x±) = 〈x±|e±

i
2
φ0(E)Ŵ−1

± |E〉. (A.12)

The operators Ŵ± are called “dressing operators” and take the form,

Ŵ± = Ŵ±e
P

n≥1 z±nω̂∓n/R

, Ŵ± = e±
1
2
i(1±a)φ(E)e−iR

P

n≥1 v±nω̂±n/R

, (A.13)

where

ω̂ = e−i∂E . (A.14)

They satisfy the relation,

Ŵ+e−iφ0Ŵ−1
− = 1 . (A.15)

It is the relation (A.15), which, together with Theorem 1.5 of [27], allows one to relate the

computation of the deformed matrix model to the Toda flow. The structure of the Toda

flow then allows one to compute φ(E) and the v±n’s as a function of z±n’s, provided one

specifies the initial conditions satisfied by the undeformed theory. Once the φ(E) is found,

the partition function can be derived from (A.9).

Since we already know the wave functions which diagonalize K−K+ in the undeformed

theory, we can write the initial condition for Ŵ± in the following form.

Ŵ±(zn = 0, z−n = 0) = e±
1
2
i(1±a)φ0(E) . (A.16)

Here, the parameter a is introduced to allow for the ambiguity in the overall phase of the

wave functions which does not affect any physical results. Indeed, different choices of a

give rise to the same flow [29]. We note this ambiguity here simply to warn the reader of

the different conventions found in the references, with a = 0 and a = ±1 being the most

popular.

11Alternatively, one can view ψE
±(x±) as the set of biorthogonal wave functions for operator K−K+ whose

asymptotics have been deformed so that ψE
±(xpm) ∼ eiU±(x±)x

±iE−1/2
± for large x±.
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It is customary to parameterize Ŵ± as

Ŵ± =
∞

∑

j=0

ŵ±
j (E, z+, z−)ω̂±j. (A.17)

Then, one can identify ŵ±
0 as being related to φ(E) in the parameterization of (A.13)

according to

ŵ±
0 (E, z+, z−) = e±

i
2
(1±a)φ(E) . (A.18)

This form of W can be matched to the convention of [27] by setting a = −1 and identifying

ŵ
(∞

0
)

j (s, z+, z−) = ŵ±
j (E = i(s/R + 1/2), z+, z−) ,

Ŵ (∞
0

)(z+, z−) =

∞
∑

j=0

diag[ŵ
(∞

0
)

j ]Λ∓j ,

Λ = ω̂−1/R = e∂s . (A.19)

With this choice, Ŵ(∞
0

) takes the form given in (1.2.9) and (1.2.10) of [27]. The sign and

phase of z±n was chosen in (2.13) in order for the same z±n to appear on both side of this

identification.

B. Baker Akhiezer function

The Baker-Akhiezer function for the Toda lattice hierarchy is defined in terms of the

dressing operators [34];

Ψ+
s (λ) =

(

∞
∑

n=0

ŵ(∞)
n (s, z+, z−)λ−n/R

)

exp(z+(λ1/R) + s log λ1/R),

Ψ−
s (λ) =

(

∞
∑

n=0

ŵ(0)
n (s, z+, z−)λn/R

)

exp(z−(λ−1/R) + s log λ1/R). (B.1)

Equivalently, one has

Ψ+
s (λ) = Ŵ(∞)λs/R, Ψ−

s (λ) = Ŵ(0)λs/R . (B.2)

Defining the Lax operator, L±, and the Orlov-Shulman operators, M±, by

L± = Ŵ(∞
0

)Λ±RŴ(∞
0

)−1, (B.3)

M± =
1

R
W(∞

0
)sW(∞

0
)−1, (B.4)

it follows that the Baker-Akhiezer functions satisfy the differential relations,

L+Ψ+
s (λ) = λΨ+

s (λ), L−Ψ−
s (λ) = λΨ−

s (λ), (B.5)

M+Ψ+
s (λ) = λ

∂

∂λ
Ψ+

s (λ), M−Ψ−
s (λ) = λ

∂

∂λ
Ψ−

s (λ) . (B.6)
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These Baker-Akhiezer functions are intimately related to the fermion wave functions

of the double-scaled matrix model. Specifically,12

(ψE
±(x±))∗ =

1√
2π

x
(1∓1)/2
± Ψ±

s (x±1
± )

∣

∣

∣

∣

s=−R(iE+1/2)

. (B.7)

Using the formal expression for the Baker-Akhiezer function, (B.2), the orthogonality

relation (A.15), and the dictionary (A.19), it follows that

1√
2π

Ψ+
s (λ+) =

∫

dλ−1
− eiλ+λ−1

−
1√
2π

λ−Ψ−
s (λ−). (B.8)

The Fourier transform relation for the dual Baker-Akhiezer function (2.34), as well as the

Bessel (3.1) and the sine/cosine transform (3.19) for the ĉ = 1 models, can be derived along

similar lines.

C. The Imbimbo-Mukhi integral for general n

In this section, we show how the properties of the Baker-Akhiezer function determine the

(n + 1)× (n + 1) Imbimbo-Mukhi integral in terms of the n×n integral. The computation

is essentially the same as the 1 × 1 case, but the notation is a bit more complicated. It is

useful to define

εn =

n
∑

i=1

ε(λ
−1/R
+i ). (C.1)

We then have the relation,

Ψ+
s (−εn, z−, λ̃+) =

τ(−εn − ε(λ−1/R), z−, s)

τ(−εn, z−, s)
e
−

P

i,n
1
n

“

λ̃
λi

”n/R
+s log(λ̃1/R)

, (C.2)

so that

τ(−ε(λ̃−1/R) − εn, z−, s) = Ψ+
s (−εn, z−, λ̃)τ(−εn, z−, s) e

P

i,n
1
n

“

λ̃
λi

”n/R
−s log(λ̃1/R)

. (C.3)

Next, note that

Ψ+
s (−εn, z−, λ̃+) = (C.4)

=

∫

dλ̃−1
− eiλ̃+λ̃−1

−
1√
2π

Ψ−
s (−εn, z−, λ̃−)λ̃−

=

∫

dλ̃−1
− eiλ̃+λ̃−1

−
1√
2π

τ(−εn, z− − ε(λ̃
1/R
− ), s + 1)

τ(−εn, z−, s)
exp[z−(λ̃

−1/R
− ) + (s + R) log(λ̃

1/R
− )].

Substituting this into (C.3) gives

12The apparent asymmetry between the ± components of the Baker-Akhiezer function is a consequence

of the conventions of [27, 34] which chose to set a = −1. This asymmetry is also reflected in formulas

relating the Baker-Akhiezer function and the τ -function (2.22), as well as the unnatural factor of λ− in the

Fourier transform relation (B.8). The more symmetric choice would have been to set a = 0.
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τ(−εn − ε(λ̃
−1/R
+ ), z−, s) = e

P

i,n
1
n(λ̃+/λi)

n/R
−s log(λ̃

1/R
+ )

×
∫

dλ̃−1
− eiλ̃+λ̃−1

−
1√
2π

τ(−εn, z− − ε(λ̃
1/R
− ), s + 1) exp[z−(λ̃

−1/R
− ) + (s + R) log(λ̃

1/R
− )],

(C.5)

or, equivalently, using the notation, (2.30), and shifting n → n − 1, we find the recursion

relation,

Zn(A, t−, s) =

(

n−1
∏

i=1

1

Ai − An

)

e−s log(An)+
Pn−1

i=1 log(Ai) (C.6)

×
∫

dMn√
2π

e−νMR
n AR

n Zn−1(A, t− − ε(M−1
n ), s + 1)e−νt−(Mn)−(s+1) log(Mn).

It is straightforward to check, by direct substitution, that (2.31) solves (C.6).
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